Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37949654

RESUMO

Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.


Assuntos
Eletroencefalografia , Humanos , Animais , Masculino , Macaca mulatta , Eletroencefalografia/métodos
2.
Cortex ; 149: 123-136, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219996

RESUMO

A hallmark of human evolution resides in the ability to adapt our actions to those of others. This aptitude optimizes collective behavior, allowing to achieve goals unattainable by acting alone. We have previously shown that macaque monkeys are able to coordinate their actions when engaged in dyadic contexts, therefore they offer a good model to study the roots of joint action. Here, we analyze the behavior of five macaques required to perform visuomotor isometric tasks, either individually or together with a partner. By pre-cueing or not the future action condition (SOLO or TOGETHER) we investigated the existence of a 'We-representation' in monkeys. We found that pre-instructing the action context improves the dyadic performance, thanks to the emergence of an optimal kinematic setting, that facilitates inter-individual motor coordination. Our results offer empirical evidence of a 'We-representation' in macaques, that when evoked provides an overall beneficial effect on joint performance.


Assuntos
Desempenho Psicomotor , Animais , Haplorrinos , Humanos , Desempenho Psicomotor/fisiologia
3.
Psychoradiology ; 1(2): 73-87, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665359

RESUMO

Background: Motor adaptation relies on error-based learning for accurate movements in changing environments. However, the neurophysiological mechanisms driving individual differences in performance are unclear. Transcranial magnetic stimulation (TMS)-evoked potential can provide a direct measure of cortical excitability. Objective: To investigate cortical excitability as a predictor of motor learning and motor adaptation in a robot-mediated forcefield. Methods: A group of 15 right-handed healthy participants (mean age 23 years) performed a robot-mediated forcefield perturbation task. There were two conditions: unperturbed non-adaptation and perturbed adaptation. TMS was applied in the resting state at baseline and following motor adaptation over the contralateral primary motor cortex (left M1). Electroencephalographic (EEG) activity was continuously recorded, and cortical excitability was measured by TMS-evoked potential (TEP). Motor learning was quantified by the motor learning index. Results: Larger error-related negativity (ERN) in fronto-central regions was associated with improved motor performance as measured by a reduction in trajectory errors. Baseline TEP N100 peak amplitude predicted motor learning (P = 0.005), which was significantly attenuated relative to baseline (P = 0.0018) following motor adaptation. Conclusions: ERN reflected the formation of a predictive internal model adapted to the forcefield perturbation. Attenuation in TEP N100 amplitude reflected an increase in cortical excitability with motor adaptation reflecting neuroplastic changes in the sensorimotor cortex. TEP N100 is a potential biomarker for predicting the outcome in robot-mediated therapy and a mechanism to investigate psychomotor abnormalities in depression.

4.
Front Mol Neurosci ; 11: 292, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323739

RESUMO

Parents' stressful experiences can influence an offspring's vulnerability to many pathological conditions, including psychopathologies, and their effects may even endure for several generations. Nevertheless, the cause of this phenomenon has not been determined, and only recently have scientists turned to epigenetics to answer this question. There is extensive literature on epigenetics, but no consensus exists with regard to how and what can (and must) be considered to study and define epigenetics processes and their inheritance. In this work, we aimed to clarify and systematize these concepts. To this end, we analyzed the dynamics of epigenetic changes over time in detail and defined three types of epigenetics: a direct form of epigenetics (DE) and two indirect epigenetic processes-within (WIE) and across (AIE). DE refers to changes that occur in the lifespan of an individual, due to direct experiences with his environment. WIE concerns changes that occur inside of the womb, due to events during gestation. Finally, AIE defines changes that affect the individual's predecessors (parents, grandparents, etc.), due to events that occur even long before conception and that are somehow (e.g., through gametes, the intrauterine environment setting) transmitted across generations. This distinction allows us to organize the main body of epigenetic evidence according to these categories and then focus on the latter (AIE), referring to it as a faster route of informational transmission across generations-compared with genetic inheritance-that guides human evolution in a Lamarckian (i.e., experience-dependent) manner. Of the molecular processes that are implicated in this phenomenon, well-known (methylation) and novel (non-coding RNA, ncRNA) regulatory mechanisms are converging. Our discussion of the chief methods that are used to study epigenetic inheritance highlights the most compelling technical and theoretical problems of this discipline. Experimental suggestions to expand this field are provided, and their practical and ethical implications are discussed extensively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...